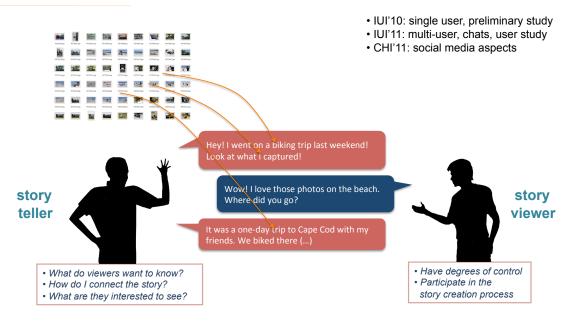
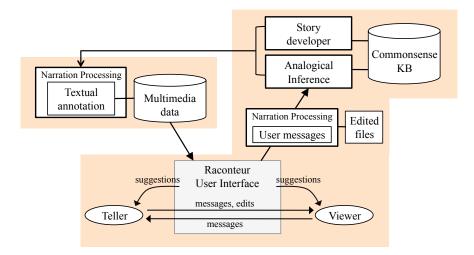

Intelligent Assistance for Conversational Storytelling Using Story Patterns

Pei-Yu (Peggy) Chi and Henry Lieberman MIT Media Lab

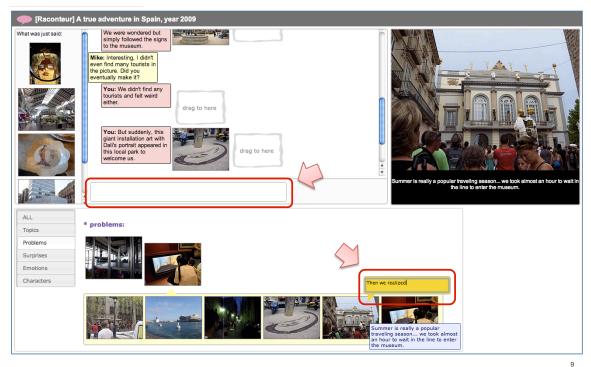
IUI 2011, Palo Alto, CA, USA

|--|--|




humans = storytellers

Raconteur : from chat to stories



Raconteur demo

Raconteur System

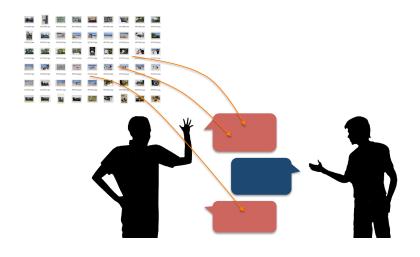
Raconteur Interface

Annotated Multimedia Repository

Given a link to an online album (e.g. Picasa)

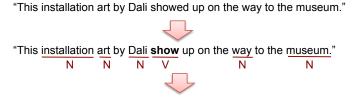
"This installation art by Dali showed up on the way to the museum. It was a big surprise because we didn't expect to see this in such a local park."

video (1'00")



"Two singers were performing the famous aria "None Shall Sleep" from the opera "Turandot" in this street corner in Barcelona. Again, art can be so close to daily life."

= media elements = story units


• Unannotated files: kept in the system, but not analyzed

System goal

match chat messages with relevant annotated files

1) Narration Processing

("installation", "art", "show", "way", "museum")

Stemming and lemmatization, Part of speech (POS) tagging

To identify words including verbs, nouns, adjectives, adverbs, and conjunction markers

Remove interjection: Yeah, god, gosh, oh, huh, uh, man, well, so, right, yes, . and non-story-world Clause: I think, I mean, I said, I guess, I did, you know, you mean, you see, You wouldn't believe it, that's all, .

Named entity recognition (NER)

- Story characters: "Peter", "Gaudi", "Dali"
- Organizations: schools, museums
- · Geographical areas: Spain, Barcelona
- Time: one hour, July 4th

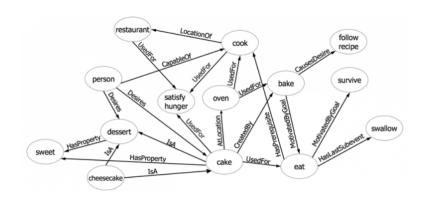
using Natural Language Toolkit (NLTK)

BIRD, S. KLEIN, E, LOPER, E. AND BALDRIDGE, J. Multidisciplinary Instruction with the Natural Language Toolkit. In Proc. of TeachCL '08: the 3rd Workshop on Issues in Teaching Computational Linguistics, 2008.

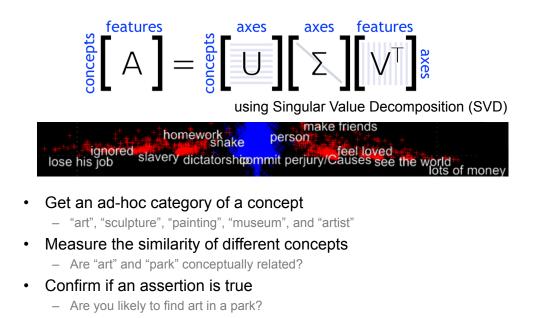
2) Relevant Files Finding using Commonsense

- common sense knowledge = a set of assumptions and beliefs that are shared among people in our everyday life.
 - "Art is beautiful."
 - "An airport is used for travel."
 - "You would smile because you are happy."
- "... for the everyday necessities of recognizing what a person is "talking about" given that he does not say exactly what he means, or in recognizing such common occurrences and objects."

- Sociologist H. Garfinkel 1967

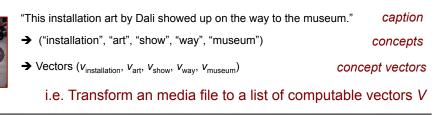

GARFINKEL, H. Common Sense Knowledge of Social Structures: The Documentary Method of Interpretation in Lay and Professional Fact Finding. In *Studies in Ethnomethodology*, 1967

13


Commonsense Knowledge Tool: OMCS and ConceptNet

- 20 two-place relations

 - AtLocation(art, museum) vs. "Something you find at a museum is art."
 - PartOf(sculpture, art) vs. "Sculpture is a kind of art."
 - HasProperty(art, inspiring) vs. "Art is inspiring."
- > 1 million assertions in English


Commonsense Reasoning Tool: AnalogySpace

SPEER, R., HAVASI, C., AND LIEBERMAN, H. AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge. AAAI2008.

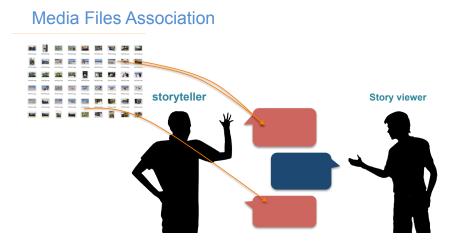
Associate Computable Media Files

photo/video

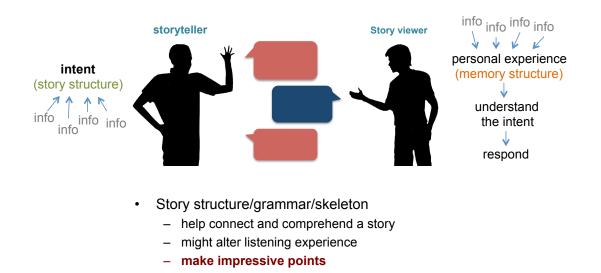
A chat message with M concepts

 $V_{chat} = (v_1, v_2, \dots, v_M)$

 $\overset{\wedge}{V'_{chat}} = \frac{V'_{chat}}{|V'_{chat}|}$


- 1. concept vectors
- 2. add up $V'_{chat} = \sum_{i=1}^{M} v_i$
- 3. normalize
- 4. take the dot product

A media file n with N concepts $V_n = (v_1, v_2, \dots, v_N)$


$$V'_{n} = \sum_{j=1}^{N} v_{j}$$
$$\overset{\wedge}{V'_{n}} = \frac{V'_{n}}{|V'_{n}|}$$

s > *Threshold* : this file is **conceptually relevant** to the chat message

 $s = \overset{\Lambda}{V'_{chat}} \cdot \overset{\Lambda}{V'_n}$

3) Consider Story Patterns

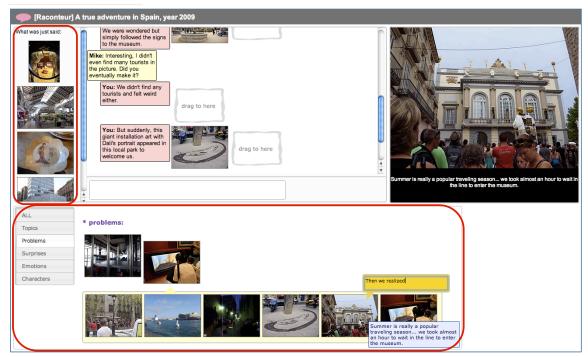
SCHANK, R. C. Tell Me a Story: A New Look at Real and Artificial Intelligence, Northwestern University Press, 1991. SCHANK, R. C. Explanation Patterns: Understanding Mechanically and Creatively, Psychology Press, 1986. BLACK, J. B. AND WILENSKY, R. An Evaluation of Story Grammars. In Cognitive Science, vol. 3 (3), 1979.

17

3) Story Patterns Finding

Problem and Resolution

- Common pattern in travel stories

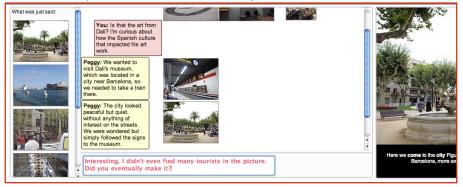

- "leaving for Spain" vs. "flight was delayed/cancelled because of the storm"
- "buying fresh food in a local market" vs. "wallet got stolen"
- "putting up the tent" vs. <u>"trouble</u> with assembling the tent poles"
- To identify problem: Vector $v_{person-desire}$ from AnalogySpace

F			
Problem related concepts	Dot product value	Non-problem related concepts	Dot product value
traffic jam	-0.993	sunshine	0.695
delay	-0.992	famous	0.687
rain	-0.457	earn	0.025
wait	-0.243	relax	0.022
lose	-0.110	travel	0.018
steal	-0.032	win	0.017

- Then connect those related events

SCHANK, R. C. Explanation Patterns: Understanding Mechanically and Creatively, Psychology Press, 1986. 19

User Interactions


User Interactions

Teller: drag & drop items to enhance

or chat on any item

Viewer: response with comments or questions

Evaluation

- 10 Participants in 5 pairs
 - All frequent users of social networking sites
 - Storytellers were asked to bring samples of personal media files
- Procedure:
 - Pre-test interview
 - Asked storytellers to select, upload, and annotate files
 - Introduced Raconteur UI to each pair
 - Conducted storytelling session for each pair
 - Post-test interview and questionnaire (Likert-5 scale)

Results of Material and Chats

- 5 collected repositories:
 - Average size: 70.2 media elements
 - 98.0% of photos vs. 2% of video clips (most < 30 seconds)
 - 97.2% of the files were annotated
 - · Average length of captions: 10.0 English words
 - 3 of media sets were originally also uploaded to Facebook
- Chats:
 - Average time: 23 minutes
 - 117.6 messages:
 - 52.7% from storytellers (ave. 6.5 words)
 - 47.3% from viewers (ave. 5.6 words)
 - ≠ number of events
 - e.g. "Check this out.", "You know what?"

23

Results of Media Used

- 98.2% followed Raconteur's suggestions
- 33.1% of files were used
 - no obvious relation between the size of repository and the number of used elements
- Source of edits:
 Styles of interaction:
 Styles of interaction:
 - " (...) I soon realized I was connecting my experiences together."

User Feedback

- 1. Create Stories as Easily as in Daily Conversation
 - " (...) helped me recall and brainstorm my stories. I was not thinking alone! "
- 2. Make Impressive Points During the Chat
 - Reflected storytellers themselves: " (...) my demo was a hot spot. I've even collected drawings from more than 80 participants."
 - Viewers were all able to recount the memorable points
- 3. High Level of Audience Engagement in the Stories
 - helped the audience control of the story content: "I also could see how my friend chose the specific scenes based on my questions."
- · Problems:
 - A created story was less structural for reviewing afterwards
 - It was less easy to retell the friend's stories in a clear sequence
 - The update speed of system's suggestion was sometimes too fast

Intelligent Assistance for Conversational Storytelling Using Story Patterns

Pei-Yu (Peggy) Chi and Henry Lieberman MIT Media Lab

IUI 2011, Palo Alto, CA, USA