

Enhancing Cross-Device Interaction Scripting with
Interactive Illustrations

Pei-Yu (Peggy) Chi1,2 *, Yang Li1, Björn Hartmann1,2 *

Google Inc.1
Computer Science Division, UC Berkeley2

peggychi@cs.berkeley.edu, yangli@acm.org, bjoern@cs.berkeley.edu

ABSTRACT
Cross-device interactions involve input and output on
multiple computing devices. Implementing and reasoning
about interactions that cover multiple devices with a
diversity of form factors and capabilities can be complex.
To assist developers in programming cross-device
interactions, we created DemoScript, a technique that
automatically analyzes a cross-device interaction program
while it is being written. DemoScript visually illustrates the
step-by-step execution of a selected portion or the entire
program with a novel, automatically generated cross-device
storyboard visualization. In addition to helping developers
understand the behavior of the program, DemoScript also
allows developers to revise their program by interactively
manipulating the cross-device storyboard. We evaluated
DemoScript with 8 professional programmers and found
that DemoScript significantly improved development
efficiency by helping developers interpret and manage
cross-device interaction; it also encourages testing to think
through the script in a development process.

Author Keywords
Cross-device interaction; scripting; interactive illustration;
storyboards.

ACM Classification Keywords
H.5.2. User Interfaces — prototyping, input devices and
strategies, graphical user interfaces.

INTRODUCTION
Wearable and mobile devices have introduced new ways for
interaction with their unique capabilities and form factors.
As consumers embrace a multi-device ecosystem,
interactions spanning multiple devices can bring significant
benefits beyond operating single devices. Examples that
have been shown include: cross-display content

manipulation [29, 32, 37], watch-phone interactions [6, 11,
16], multiple cube-size device gaming [34], and interactive
augmented space via smart eyewear [10, 27].

Implementing cross-device interactions poses several
challenges to developers. First, it is difficult to account for
the wide variety of form factors and capabilities of devices
and their combinations that a program may be run on. For
example, a cross-device camera app may have to provide
several versions to offer similar interactions on a phone and
a watch or an eyewear for consistency. Second, it is
challenging to express and reason interaction flows that
span multiple devices. The higher-level relationships
between cross-device inputs and outputs are often defined
in a variety of callback functions spread across a codebase.
Third, testing cross-device interactions remains difficult,
especially when various physical inputs across devices are
involved. Developers often have to resort to stepping
through applications and manually provide input to test
these interactions.

Prior work has aimed to lower the complexity in cross-
device development through programming frameworks or
toolkits by abstractions. Panelrama introduced a constraint-
based approach for specifying cross-device UIs [37].
Weave’s scripting framework allows developers to create
cross-device behaviors using a high-level API inspired by
Web programming models [7]. WatchConnect provides a
platform for prototyping watch-centric apps considering
watch-specific capabilities [16]. In this paper, we take a
complementary but independent approach: We hypothesize
that a key difficulty lies in bridging the gap between
envisioning concrete examples of interactions and
abstracting specification in code. When designing cross-
device interactions, developers have to translate device-
specific scenarios into abstract specifications to a range of
devices at runtime. The gulf of execution [30, 25]—writing
device selection and event handler statements—and the gulf
of evaluation—reasoning whether existing statements
specify the correct set of devices and interactions—can be
significant when number of devices and form factors
increase. Our goal is to minimize these gulfs by 1)
illustrating the behavior of code with concrete examples,

 * This work was done while the first and the third authors were
respectively an intern and an academic consultant at Google.

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI'16, May 07-12, 2016, San Jose, CA, USA
ACM 978-1-4503-3362-7/16/05.
http://dx.doi.org/10.1145/2858036.2858382

and 2) the opposite direction—generating code from direct
manipulation of the visual illustration.

We present DemoScript, a novel technique that assists
developers in programming cross-device interaction by
interactively illustrating the behavior of the program. Based
on an understanding of the syntax and semantics of a cross-
device UI framework, DemoScript analyzes the program as
the developer enters it, and in real-time automatically
generates and presents a visual illustration of the scripted
behavior as a cross-device storyboard (see Figure 1).

In our approach, developers move between authoring code
(i.e., abstract application logic) and manipulating
visualizations (i.e., examples of concrete run-time
executions) of aspects of their code. The visualizations
focus on key aspects of cross-device interactions—device
selection and interaction flow—and show examples of how
the written behaviors give rise to different behaviors across
multiple devices. Developers can navigate in code line-by-
line to see the partial, step-by-step execution, which helps
them connect the abstract code to run-time behaviors.
Through the cross-device storyboard, developers can revise
their program for a range of aspects by directly
manipulating the elements in the storyboard. Our approach
effectively encourages testing and visually verifying cross-

device interactions that involve various device form factors
and interaction capabilities.

An evaluation of DemoScript with 8 professional
programmers indicated that our technique significantly
improves the efficiency for programming complex
interaction behaviors such as cross-device interaction, in
comparison with a baseline approach. In particular, our
work makes the following contributions:

• A novel approach for programming cross-device
interactions, based on a seamless coupling of scripting
and interactive visual illustration of scripted behaviors;

• Interactive cross-device storyboards—a novel
visualization of interaction logic, and a set of initial
findings on the usefulness and usability of cross-device
storyboards. Storyboards allow developers to revise a
script by direct manipulation and visualizing code
fragments as well as entire programs;

• A set of methods for analyzing a cross-device
interaction script in a given UI framework.

RELATED WORK
Our work touches on three research topics: enhanced code
editors, cross-device IDEs, storyboards in interaction
design, and iterating with examples. We here discuss how
our work is related to each of these areas.

Figure 1. DemoScript allows developers to script the abstract logic in the Script Editor (a) and in real-time observe and manipulate the
simulation in the Viewer (b). Developers can specify device examples in the Device Panel (c), observe the device selection (e), and verify
the application logic in the cross-device storyboard (d). The storyboard employs a grid layout where each column represents a device

selection, and each row shows the device state progress in time connected by arrows to show the interaction flow.

Enhanced Code Editors
Tools that visualize different aspects of source code and
allow direct manipulation of abstractions can successfully
lower the complexity of programming [28]. Prior work has
attempted to integrate many software visualization
techniques into code editors [8]. For example, Codelets
shows interactive examples and documentation inside an
IDE [31]. Stacksplorer visualizes the structure of call
graphs [18]. Beyond enhancing IDEs for general
programming tasks, research has also focused specifically
on techniques for supporting the development of interactive
applications. Most IDEs nowadays ship with a GUI builder
to enable developers to graphically layout user interfaces.
Xcode further allows developers to create UI sequences for
Apple Watch and interactively monitor variables in a
program [2, 3]. Juxtapose allows programmers to explore
interface alternatives [14] using a linked editing technique
[35], and DejaVu helps programmers understand computer
vision-based applications that extract interaction logic from
camera input [19].

Similar to prior work, we intend to enhance program editors
for interactive systems. However, we specifically focus on
the unique challenges emerged from cross-device
interaction development. We designed DemoScript based
on a fundamental understanding of programming
frameworks for cross-device interactions.

Cross-Device Interaction
In multi-device research, authoring support tends to focus
either on graphical, direct manipulation authoring, or on
programming frameworks without visual editors. In the first
category, Damask provides a GUI for designers to specify
UI patterns across devices [26], while XDStudio supports
authoring distributed UIs visually on emulators or actual
devices [29]. In the second category, the WatchConnect
toolkit comprises both hardware and software components
for rapid prototyping of watch-centric cross-device
applications [16]. Panelrama uses a constraint-based
approach for specifying cross-device UIs [37]. Our work
seeks to find a middle ground between these two
approaches. On one hand, we focus on preserving the
flexibility and high complexity ceiling of authoring
interactions in a general purpose programming language.
On the other hand, we contribute interactive storyboards
that help developers understand the interactions in code.

Storyboards
Screenflow diagrams or UI storyboards are widely used in
practice to help developers visualize the flow and think
through the logic of an application [36]. They show a
sequence of UI screens, each representing application
output triggered by user inputs. Researchers have proposed
systems that use storyboards to author various kinds of
interactive prototypes without code, including sketch-based
GUIs [21], sensor-driven mobile prototypes [13], and

activity-based applications [23]. Storyboards can also be
generated from user demonstration. For examples,
FrameWire extracts interaction logic from a paper
prototype walkthrough [24] and the Designers’ Outpost
captures site maps on a smart whiteboard [20].

In contrast to these approaches, we extend the
expressiveness of storyboards by introducing a new format
based on the unique aspects of cross-device interaction. In
addition, our storyboards are closely coupled with
scripting—the changes in a script are reflected in the
storyboard instantaneously and vice versa.

Iterating with Examples
Examples help concretize and illustrate abstract concepts
and can serve as a guide for exploring design spaces.
Research has contributed example-centric systems for using
examples to search, filter and explore information spaces.
For example, users can look for visual website designs by
navigating a corpus of specific examples and indicate
preferences such as “show more like these selections” [33,
22]. Other efforts include refining and manipulating
database queries interacting directly with example results
[1], and improving image search results by learning similar
features from user-specified examples [9]. In our work, we
employ examples to help developers specify selection
queries for devices from a wide range of options.

SCRIPTING WITH DEMOSCRIPT
DemoScript helps developers author and test a cross-device
interaction script using interactive illustrations. It
automatically analyzes a script as it is entered or modified
by a developer, based on a cross-device UI framework—in
our current implementation, we use the Weave framework
proposed previously [7]. DemoScript identifies code
relevant to device specification, user input events, and
device actions (UI output), and visualizes the interaction
flow for an entire program or a subset of code as a cross-
device storyboard and presents it side-by-side along the
script editor (see Figure 1).

Our cross-device storyboard illustration is based on a grid
layout (see Figure 2f). Each column of the grid represents a
selected device, and each row presents a state of the cross-
device application that is characterized as the combination
of device states (across columns). Each cell in this
storyboard thus shows the state of a specific device at a
particular point of the script execution. If there is no change
on a device at an execution step, its representation is
omitted on the row such that the developer can easily spot
devices that have state changes. The directional arrows that
connect cells are transitions, which visualize the interaction
flow from one device state to another. A transition can be
triggered by a device action (e.g., showing an image on the
display) or a user event (e.g., shaking the device).

To discuss how a developer would benefit from
DemoScript in scripting a cross-device behavior, assume a
developer, Megan, wants to create a photo sharing
application such as Instagram. In her design, a watch shows
notifications of incoming photos as thumbnails, and tapping
on a thumbnail on the watch will open a larger view of this
photo on a device with a larger-form factor device, such as
a smartphone or a tablet. As the photo is opened on another
device, the watch then switches to the Maps application
showing the geographical location of this photo. We
demonstrate how Megan uses a scripting tool enhanced by
DemoScript. We highlight how our tool helps developers
on a set of key tasks in cross-device development.

Specifying Target Devices and Transitions
Megan starts by specifying her target devices for this
application. To do so, she creates a device selection in the
Script Editor (see Figure 1a) by entering
�������	�������������. As she enters the script, she
immediately sees an LG G Watch emulator rendered on the
storyboard (see Figure 2a). The top ribbon of the Viewer
shows a Device Selection list of four smart watches (see
Figure 1e) that match this selector. Megan can choose a
target emulator by selecting a device from the list. At the
bottom, a Device Panel shows the device repository in
which she can browse through possible devices (see Figure
1c). To specify the device for photo viewing, she creates
another selection for a phone by entering
�������	���������
��� in the Script Editor. Megan sees a
phone emulator displayed on the storyboard column next to
the watch emulator (see Figure 2b).

Megan then realizes that the phone is needed only when the
user shakes the watch. Without manually modifying her
script, she adds a transition from the watch to the phone by
double-clicking the two device states in sequence in the
storyboard and associates the “shake” event to it in the
popup. This direct manipulation automatically refactors the
script by attaching an event callback to the watch selection
and nesting the photo selection within the callback:

 ��
�����������
����
����
�����
�������������	���������
�����
������

Correspondingly, the phone emulator is pushed down a row
in the storyboard and connected with a transition from the
watch, which indicates the use of watch is triggered by the
shake event from the watch (see Figure 2c). To help Megan
understand the scope of the callback function (see Line 2-
4), DemoScript visualizes the scope as an event block that
encapsulates any device states that take place only in this
callback function scope. A transition arrow tagged with an
input event is added from the source device that triggers the
event—the watch that fires the shake event (Line 2)—to the
event block.

Figure 2. An example of scripting cross-device interaction

enhanced by DemoScript.

Specifying Device Actions
Next, Megan starts designing the device outputs that users
would want to see. To simplify our discussion, assume the
program has predefined the resource handle to the photo
and its metadata as variables �����, �
�, and ������
respectively. In the Script Editor, Megan adds ������������
to the watch selection before the event callback, which lets
the watch show a thumbnail of the �����. Similarly, she
adds ������������ to the phone selection to show a large
view of the ����� on the phone in response to the shake
event. In the process, she immediately sees a sample photo
being rendered on both device emulators (see Figure 2d).

While the phone offers a large view of the image, Megan
wants the watch to display the photo’s geographical
location in a Maps application. To do so, in the callback
(see Figure 2e) she adds:
��
�
����
��
��
������������������
��������
��

With that, the watch switches to a map view the moment
when the photo is opened on the phone. All these changes
in the script are automatically captured and presented in the
storyboard. Both devices are shown on the same row
because their states all have changed in response to the
shake event (see Figure 2e). Note that the event block has
also been expanded to include the device state updates of
both the watch and the phone.

Revising Device Selection Criteria with Examples
Megan acquires a good understanding of the look and feel
of her choice of devices for the application. From the phone
visualization in the storyboard, Megan realizes that users
might prefer an even larger view of the photo such that
users can easily annotate the photo. To this end, she decides
to modify the device selection for the phone, she points to
the line where the selector, �
��
��
�
���������
��—is
declared (see Line 3 in Figure 2e). In response to this
action, DemoScript automatically selects the column of the
phone selection, updates the Device Selection ribbon at the
top of the Viewer Panel, and opens the device repository
panel at the bottom (see Figure 1e and 1c).

Megan then selects a few tablets from the device repository,
including a Nexus 9 and a Surface Pro. Given these device
examples, DemoScript infers a list of selector options based
on the attributes of these devices, including device types
and capabilities. We will discuss the underlying mechanism
in the following section. In particular, DemoScript suggests
������
����! ��	��	���	��� �� as a top choice. After

reviewing device examples resulted from this selector in the
Device Selection list, she discovers that this selector does
not cover laptops that can be converted to a tablet. As such,
she explores other suggestions in the selector list offered by
DemoScript (see Figure 1c) by testing them out—clicking
on each option to view matched device examples. She
finally chooses the selector ���������
���
! ����
 �� that
better matches her expectation. She then clicks the “Send”
button to commit the selector to the script.

Reusing Interaction Behaviors by Drag-and-Drop
After testing her application in the storyboard, Megan
decides that showing the map on a phone would be
preferable to the watch that has limited display real estate.
To do so, instead of modifying the script, she directly drags
the map view on the watch to the third, unoccupied column.
This direct manipulation creates another instance of the
watch selection with the map shown on the third column.
Meanwhile, DemoScript creates another selection in the
callback function. Because the developer will most likely
change the device selection, instead of having two watches
in the application, DemoScript automatically prompts the
developer to specify a selector. She updates the selector
with ������
�. Once again, the change is immediately
reflected in the storyboard.

Finally, Megan adds more user feedback to enrich this
application and sees her complete storyboard as shown in
Figure 2f. As the script grows to be more complicated, she
could select a block of code to partially render the
storyboard. For example, selecting Line 7-10 in Figure 2f
will re-render the storyboard to show only a tablet showing
a photo (Line 7) and a phone playing sound and then
launching an app (Line 9-10).

From these examples, we show that DemoScript is closely
integrated with script editing. DemoScript enables the
developers immediately see the dynamic update on the
storyboard based on the position of the script in the Editor.
This helps understand the mapping between a portion of
code to its runtime execution. Our cross-device storyboard
enables a set of visual representations and direct
manipulation operations that correspond critical tasks in
scripting a cross-device interaction. It also provides an
effective visualization of the interaction flow. For example,
by looking at how often transitions run across columns, a
developer can easily understand the amount of attention
shift during an interaction behavior, which is a critical
factor of the usability of a cross-device application.

Figure 3. The processing pipeline of DemoScript. The system analyzes developer manipulations and scripting edits

in the background to provide real-time, visual feedback in the IDE.

THE DEMOSCRIPT SYSTEM
In this section, we discuss the underlying mechanisms of
our system. DemoScript is integrated with a scripting editor
and continuously analyzes the script to dynamically
generate a cross-device storyboard visualization.
Particularly, our implementation analyzes Weave scripts
written in JavaScript [15], by obtaining the syntax tree of
the code and partially executing it to provide visual
assistance in real-time (see Figure 3).

Script Analyses
DemoScript first parses the script into an abstract syntax
tree (AST). An AST represents the essential syntactic
structure of source code in a tree structure. ASTs have been
widely used for program analysis [4] and can be used for
program slicing to enable automatic partial testing [38] and
potentially usability evaluation [17].

We traverse an AST and recursively build a simplified tree
that expresses hierarchical relationships between key
constructs of the Weave API, which includes 1) device
selectors, 2) actions that change UI state, and 3) events and
their handlers that define which input events trigger the
actions. Device selectors use a declarative query language
to define desired properties, similar to CSS selectors for
choosing elements on Web pages. For example,
������	������������ selects devices that have a display to
show visual outputs. Actions are declarations to change the
device states, such as updating UI, launching existing
application, or playing sounds. An action can be triggered
in a callback function that listens to any specific event
emitted by a device, e.g., touching the screen or shaking the
device. DemoScript also identifies and tracks location
information for each Weave construct, including its line and
column indices to the source code.

Cross-Device Storyboard Generation
DemoScript renders the cross-device storyboard by
traversing the AST. It focuses on visualizing device
selections and their interaction relations. DemoScript first
generates an initial view by rendering emulators for each
selection shown in different columns. It then partially
executes the code based on the caret position in the Script
Editor and dynamically adjusts the layout.

Device Selection Rendering
For each selection statement in the script, DemoScript
creates a new column in the storyboard view. To visualize
the lifecycles of device selections (i.e., if a device is
operated only when a certain event is fired), it differentiates
the top-level selections {selectiontop} and those exist in
event callbacks {selectionevent} by presenting them on
different rows—pushing {selectionevent} down one row. For
example, in the script in Figure 2f, two new selections via
���
�������	 (from Line 1 and 4) are shown in the first and

second columns. Inside the shake callback function, another
new selection (from Line 8) is added to the third column
but pushed to the second row.

Next, it is important to visualize the specific “scope” in an
interaction flow for developers to visually track the device
states before and after an event. Therefore, DemoScript
renders an event-associated arrow and an event block to
highlight the relation between devices. To help viewers
follow the interaction flow, DemoScript adds a transition
arrow from the selectioni ∈ {selectiontop} that triggers the
event i to another selectionj ∈ {selectionevent_i} that exists in
the callback. The transition arrow is tagged with an event
type, such as “shake” or “rotate”. It then applies an event
block to wrap {selectionevent_i}, i.e., all the selections
created in the callback. If there is no new selection, it adds
an empty block. The initial view is shown in Figure 4 top-
left. The default opacity to these visual elements is set to be
low and will be highlighted when the script is executed.

Figure 4. Storyboard adjustments by partial execution of a script

based on the developer’s navigation in the code.

Code Fragment Execution
When a developer navigates in the script, DemoScript
receives the caret position p = (linem, columnn) from the
Script Editor. It finds the specific element in code at p and
identifies all the other Weave elements from the entry point
of the script to p. For example, if m = 10 and n is between
[7, 36] as ��������� ���	����� ��	��� shown in Figure 2f,
the relevant elements include several actions (�������� in
Line 2 and 10, �
�� in Line 5 and 7, and ��� in line 9)
and an event (�
��� in Line 6) for three different device
sets, sorted by closures and positions in code. For each
partial execution sequentially from the entry point to p,
DemoScript dynamically executes these partial elements
and simulates the events in the sequence in the Weave
framework. It then adjusts the storyboard (see Figure 4) and
inserts the updated UI view for any execution that triggers a
user feedback (e.g., showing a message, playing a sound, or
starting an app).

Next, DemoScript adjusts the event block to wrap all the UI
states triggered by the corresponding callback. For
example, when developer navigates to Line 7 that is inside
the “shake” callback, a new UI for the watch is appended
below the initial view of the device, and the “shake” event
block is dynamically expanded to include this view (see
Figure 4 top-right). In other words, the developer would
only see the partial view of the entire storyboard with all
screens created prior to the first execution of Line 7. This
interactive method that generates a partial view of the entire
script allows developers to easily find the mapping between
code and execution. In addition, because DemoScript maps
the storyboard and code elements, it enables interactions for
developers to directly manipulate device state or selection
and update the script automatically.

If the caret is at a selection, it then shows the Device Panel
that allows developers to manually specify device examples
(see Figure 1e). Any update of the selector will replace the
original selector string based on its start and end position
retrieved from the AST.

Deriving Device Selection from Examples
DemoScript enables developers to specify a selector by
giving examples from a device catalog. Given q device
examples [d1,…, dq] in a repository of N devices where q ∈
[1, N], DemoScript adopts a rule-based principle to generate
a selector list. Each device di with k capabilities is
represented as a vector (capipropj, capipropj+1, …,
capi+1propj, capi+1propj+1, …, capkpropj+r), where cap is a
device capability for di (e.g., ��
����� and ��
�����)
and prop is a property of this capability, such as ������� ,
 	���������� , and ���� . This device-specific
information is presumably defined by manufacturers; we
modeled it manually from published device specifications.

DemoScript generates a list of selectors for each common
capipropj of these capability vectors between the selected
devices as: {selector1= ���"�����"�"$!�����!�� ����"�

#$!�����!� , selector2= ���#�����#�"$!�����!� , …}. Each

Figure 5. Examples of DemoScript storyboard results.

selectori will match a list of devices in the repository so that
the examples [d1,…,dq] are contained in the device
selection. In addition to capabilities, DemoScript also
considers selectors by more relaxed—such as using device
types, e.g., ���������������������—or constrained
attributes—such as device names, e.g., �����
�����������
��	�����������.

Finally, the list of selector options are ranked based on the
number of device matches resulted from each selector in an
ascending order, i.e., the more constrained the selector is,
the higher it is ranked. In this way, developers can choose a
selector based on their coverage and how well the coverage
matches their desired devices.

RESULTS
Figure 5 shows two additional examples of the DemoScript
storyboard results. The script in Figure 5a assigns one of
the devices a different role from an annotation palette (Line
7) to a chat panel (Line 16) when an event happens (i.e.,
phone calling triggered by the user, Line 12-17). This role
change is visually depicted by the second column and the
event block. In Figure 5b, the columns show the individual
functions of each device (a volume controller, a music
player, and a video player respectively) and their progress
in time considering device capabilities.

IMPLEMENTATION
The DemoScript system consists of both a backend server
and a frontend user interface. Our Node.js-based1 web
server has several functions: 1) it hosts the developers’
scripts, 2) runs the Weave framework, 3) stores the device
repository in the JSON format, and 4) maintains the
DemoScript logic. A user interacts with the frontend
application, which includes the web IDE and the Viewer,
implemented as a Chrome app [12]. When the developer
edits in the Script Editor of the IDE, the front-end app
updates the edited script and the current caret position in the
code to the back-end server. To analyze the JavaScript
code, we integrated an ECMAScript AST parser Esprima
[15] into our server to obtain the full syntax tree, which
maintains the code hierarchy. If the edited script is
executable, the server partially executes Weave code by
traversing the AST in order to store information, including
device selections and properties. This data is sent in JSON
back to the front-end UI, which highlights the code in the
Editor, visualizes the storyboard using D3 [5], and handles
developer interaction via jQuery2 and Bootstrap3. To avoid
unnecessary visual update and flickering while the
developer focuses on code editing, we included a 500ms
idle time for invoking updating. This architectural design
makes it flexible to integrate the DemoScript Viewer with
standalone IDEs such as Sublime Text4 or Android Studio5.

1 https://nodejs.org/
2 https://jquery.com/
3 http://getbootstrap.com/
4 http://www.sublimetext.com/
5 https://developer.android.com/sdk/

EVALUATION
We hypothesized that DemoScript could help developers
easily manage various aspects of the tasks for programming
cross-device behaviors that would otherwise be
challenging. To validate this hypothesis, we conducted a
study to compare DemoScript with a baseline condition that
provides a script editor and emulators—a typical setup for
UI programming. Specifically, we used the Weave IDE that
was previously introduced (see Figure 6) [7]. In the study,
we asked participants to interpret the cross-device
behaviors that are fulfilled a set of scripts, and then identify
and fix issues in these scripts for achieving different
behaviors. We garnered both quantitative measurement
such as task completion time and qualitative feedback on
their reactions to DemoScript.

Participants and Setups
We recruited 8 professional programmers (2 females), aged
between 21 and 45 years (Mean=26) from an IT company.
Participants were required to have moderate JavaScript
programming knowledge and were selected randomly from
volunteers via an internal study invitation. 5 out of 8
participants had limited mobile programming experience;
only 1 had programmed wearable devices. None of them
had used the Weave framework.

The study was conducted in a laboratory environment. A
MacBook Pro running OS X and Google Chrome browser
was connected to a 24-inch LCD display with 1920x1200
pixel resolution. We provided an external mouse and a
keyboard. Each participant was compensated with a $40
gift card for their participation in a 90-minute session.

Procedures and Tasks
At the beginning of the session, we introduced the Weave
framework to the participants and asked them to walk
through a web tutorial by following a cross-device launch
pad app design, which approximately took 10 minutes. The
Weave API documentation was available to participants
during the experiment.

Figure 6. The baseline condition in our evaluation. Similar to
conventional IDEs, it provides a script editor and a set of

emulators for testing.

We then asked the participants to perform two sets of tasks
in sequence, denoted Set I and Set II, where Set I is
assigned to the first condition and Set II for the second
condition. We counterbalanced the order of the two
conditions to guard against learning effects in our analysis.
Each set consists of two tasks with varying complexity: the
first task is relatively easy (denoted as Task 1) and the
second one is hard (denoted as Task 2). Task 1 in each set
has three subtasks, while Task 2 has two. We designed the
tasks in the way that both sets have comparable complexity,
shown as follows:

Task 1. Given a script with three device selections, two of
them each had a callback for different event types, and
the third selection was only initiated once inside a
callback function. Not all the selections and actions
matched the instructions. At most 15 minutes was given
to finish the task.
Subtask 1. [Script understanding] Explain how a
user would achieve the following goal: {set I – to see an
image, set II – to launch the Maps app}. Describe what
the user would see on each device.
Subtask 2. [Script refinement] Suppose the script’s
developer intended to show the {I – photo launch button,
II – application} on a {I –wrist-worn, II – large-display}
device, answer if the script works properly as described.
If not, fix the script to match the app description.
Subtask 3. [Interaction enhancement] To improve
the user experience, modify the script so that {I – a
prompt is shown on the target device before the photo
appears, and II – whenever there is any UI update, play a
“ding” sound on the same device as an indication}.

Task 2. The provided script had the same number of
selections as Task 1.
Subtask 1. [Script understanding] Given the app
description, does the script work as described? What
works and what is different? The app enables user to {I –
shake her phone to launch Gmail with both auditory and
visual feedback before switching the app; meanwhile, she
would see the Gmail icon on a wearable device; II –
shake a wearable device that has a thumbnail displayed in
order to see a large view of the photo on another device
with the Photos app; a “ding” sound is played before
launching the Photos app}.
Subtask 2. [Debugging] Correct the script so that it
matches the description.

Finally, participants were asked to complete an online
questionnaire with 5-point Likert-scale questions and
debrief their thoughts.

RESULTS AND DISCUSSION
We discuss participants’ performances and experience in
terms of both quantitative results and qualitative feedback
on comparing the baseline system and DemoScript.

Task Performance
All the participants completed the given tasks in both
conditions. The average completion time for each subtask is

shown in Figure 7. Overall, using the baseline system,
participants needed more time to fix and test a script
(Mean=3.2 minutes compared to 2.8 minutes using
DemoScript on average). Furthermore, participants had a
higher error rate using the baseline method (17.5%
compared to 2.25% with DemoScript). We recorded an
error when the oral interpretation was incorrect or
incomplete (for script understanding subtasks) or the script
failed to fully achieve the instruction (for scripting tasks).
We discuss these errors and participants’ coding behaviors
that we observed in the following section.

Coding Behavior

Identifying Design Patterns and Redundancy
DemoScript’s storyboard visualization helped participants
identify errors where the provided script did not match the
provided application description. For example, in the
original script of task 3 (see Figure 8a), auditory feedback
was played before the event is triggered, and the script
incorrectly specified a wrong device selection to initiate the
application. These errors were visually distinguishable in
the storyboard, and all the 4 participants were able to fix the
script with DemoScript (see Figure 8b), whereas 2 of the

Figure 7. Average completion time for each subtask of the baseline

system and DemoScript.

Figure 8. An example showing how developers can identify and

correct errors with the support of storyboard.

other 4 participants failed to correct all the errors using the
baseline system.

The storyboard also helped participants to quickly identify
the redundant code. Only 2 of 4 participants using the
baseline correctly removed the redundant code in Task 3.
Participants explained, the advantages of DemoScript
include “Being able to see the various device actions in
sequence” (P3) and to see “visualization of subsequent
events” (P6) or a “full overview over the execution flow;
event listeners are clearly visible” (P7).

Encouraging Testing When Scripting
Using DemoScript, participants actively navigated in the
Editor to test the logic in the given scripts line-by-line and
to verify their code changes (25.35 line navigations on
average). They found the concept of the multi-device
storyboard straightforward (4.5, SD=0.76) and it was easy
to test (4.625, SD=0.52). On the contrary, participants only
tested the code 2.23 times on average using the baseline
system, which provided a “Run” button to deploy the code
to emulators. P5 explained, with DemoScript, “You can
clearly see your code running on the screen, which makes it
easier to debug and understand what you are doing instead
of trying to play the scenes inside your head. It was very
clean and well designed interface and it was easy to
interact with it.” Compared to standard IDEs for mobile
devices, P2 shared, “It was a big advantage to have an
emulator for each device class running simultaneously and
it was nice that the emulators ran the program instantly.”

In the baseline condition after using the DemoScript
system, two participants answered and scripted without
testing the scripts. One of them asked if he could pull up the
device list as what DemoScript showed. The participant
later explained that he preferred to focus on coding, so
DemoScript made it easy to see the runtime results while he
scripted, whereas using the baseline system, he thought
through the code and was confident in his interpretation or
fixes (note that 2 of 5 subtasks failed).

We suspect that the ability of line-by-line testing improved
the task success rate as it helped developers identify errors
early. Participants constantly verified the script visually
when coding, which was especially effective when learning
a new framework. When participants found an error, they
could quickly identify, reason, and correct the code. This
might also lead to the fact that for some subtasks (1-3, 3-1,
3-2, 4-1), participants spent more time using DemoScript.

Visualizing Device Examples
Participants preferred how DemoScript presented a list of
emulators and showed the mapping between selectors and
emulators (4.625, SD=0.52): “With the initial IDE, it was
more difficult to find out which devices were being
selected” (P1). For the subtasks of fixing the selector, 4 of 8
participants chose to create a selector from device
examples. P2 noted that “The other nice thing was the
device selector string generator.”

Participants found it easy to learn (4.5, SD=0.53), script
cross-device interactions (4.75, SD=0.46), and felt capable
of scripting the provided tasks (4.875, SD=0.35) with
DemoScript. Participants also expressed the interests in
using DemoScript if it becomes available (4.75, SD=0.46):
“It is awesome and I want to use it :D cant wait for it.” (P5)

Opportunities and Limitations
We also collected user feedback on the additional supports
that they expected DemoScript could provide. First,
handling more complicated logic, such as conditioning
when a callback function breaks into two different
behaviors based on certain condition using ��
���� and
�	����. Our revised design providing basic support of
language-based condition is to arbitrarily select one
condition and render the storyboard but provide other paths
for developers to test. Second, two participants suggested
combing the baseline and DemoScript IDEs—to provide a
new tool that can interactively shows the step-by-step
execution but also allow them to do formal testing with
emulators. Debuggers of popular IDEs enable developers to
test application logic by inspecting execution states (e.g.,
checking variable values at breakpoints). In contrast,
DemoScript provides high-level visualization of application
logic and execution, which allows developers to easily
grasp important aspects of interaction flows. These two
approaches complement rather than compete with each
other. A developer might find it beneficial to switch
between the unique advantages of both. Third, the
storyboard can be possibly generated as a visual instruction
for consumers who would interact with the final application
at runtime.

Beyond supporting cross-device programming based on the
Weave framework, we argue that many components of
DemoScript could apply to other types of app development.
Techniques for selecting interactive elements (devices in
our case) and providing UI feedback and listening to user
events (such as touch or sensor input) are common in
interaction or mobile frameworks such as Android. To
apply our techniques, one would need to analyze UI
constructs in the framework, which is conceptually
straightforward. However, it would require additional
engineering effort to analyze a program at various levels.

CONCLUSION
We presented DemoScript, a technique that automatically
analyzes and visualizes a cross-device interaction program
while it is being written. Particularly, we introduced cross-
device storyboards, a novel visualization for cross-device
development. It is closely coupled with scripting by
offering step-by-step execution of a selected portion or the
entire program. Via the storyboard, a developer can revise
various aspects of a program by direct manipulation. We
evaluated DemoScript with 8 professional programmers and
found that it outperformed the baseline condition in many
ways to simplify programming tasks for complex
interaction behaviors.

REFERENCES
1. Azza Abouzied, Joseph Hellerstein, and Avi

Silberschatz. 2012. DataPlay: interactive tweaking and
example-driven correction of graphical database
queries. In Proc. UIST '12, 207-218.

2. Apple Inc. Swift. 2015.
https://developer.apple.com/swift/

3. Apple Inc. WatchKit. 2015.
https://developer.apple.com/watchkit/

4. Ira D. Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant'Anna, and Lorraine Bier. 1998. Clone
Detection Using Abstract Syntax Trees. In Proc. ICSM
'98, 368-377.

5. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3 Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12, 2301-
2309.

6. Xiang 'Anthony' Chen, Tovi Grossman, Daniel J.
Wigdor, and George Fitzmaurice. 2014. Duet:
exploring joint interactions on a smart phone and a
smart watch. In Proc. CHI '14, 159-168.

7. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction. In Proc.
CHI '15, 3923-3932.

8. Stephan Diehl. 2007. Software Visualization:
Visualizing the Structure, Behaviour, and Evolution of
Software. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

9. James Fogarty, Desney Tan, Ashish Kapoor, and
Simon Winder. 2008. CueFlik: interactive concept
learning in image search. In Proc. CHI '08, 29-38.

10. Jens Grubert, Matthias Heinisch, Aaron Quigley, and
Dieter Schmalstieg. 2015. MultiFi: Multi Fidelity
Interaction with Displays On and Around the Body. In
Proc. CHI '15, 3933-3942.

11. Google Inc. Android Wear. 2015.
https://www.android.com/wear/

12. Google Inc. Chrome Apps. 2015.
https://developer.chrome.com/apps/

13. Björn Hartmann, Scott R. Klemmer, Michael
Bernstein, Leith Abdulla, Brandon Burr, Avi
Robinson-Mosher, and Jennifer Gee. 2006. Reflective
physical prototyping through integrated design, test,
and analysis. In Proc. UIST '06, 299-308.

14. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design as
exploration: creating interface alternatives through
parallel authoring and runtime tuning. In Proc. UIST
'08, 91-100.

15. Ariya Hidayat. Esprima: ECMAScript parsing
infrastructure for multipurpose analysis. 2015.
http://esprima.org/

16. Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping Smartwatch-
Centric Cross-Device Applications. In Proc. CHI '15,
1247-1256.

17. Melody Y. Ivory and Marti A Hearst. 2001. The state
of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33, 4, 470-516.

18. Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl,
Björn Hartmann, and Jan Borchers. 2011. Stacksplorer:
call graph navigation helps increasing code
maintenance efficiency. In Proc. UIST '11, 217-224.

19. Jun Kato, Sean McDirmid, and Xiang Cao. 2012.
DejaVu: integrated support for developing interactive
camera-based programs. In Proc. UIST '12, 189-196.

20. Scott R. Klemmer, Mark W. Newman, Ryan Farrell,
Mark Bilezikjian, and James A. Landay. 2001. The
designers' outpost: a tangible interface for collaborative
web site. In Proc. UIST '01, 1-10.

21. James A. Landay and Brad A. Myers. 1996. Sketching
storyboards to illustrate interface behaviors. In Proc.
CHI '09, 193-194.

22. Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen
Brafman, and Scott R. Klemmer. 2010. Designing with
interactive example galleries. In Proc. CHI '10, 2257-
2266.

23. Yang Li and James A. Landay. 2008. Activity-based
prototyping of ubicomp applications for long-lived,
everyday human activities. In Proc. CHI '08, 1303-
1312.

24. Yang Li, Xiang Cao, Katherine Everitt, Morgan Dixon,
and James A. Landay. 2010. FrameWire: a tool for
automatically extracting interaction logic from paper
prototyping tests. In Proc. CHI '10, 503-512.

25. Henry Lieberman and Christopher Fry. 1995. Bridging
the gulf between code and behavior in programming. In
Proc. CHI '95, 480-486.

26. James Lin and James A. Landay. 2008. Employing
patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In Proc.
CHI '08, 1313-1322.

27. Microsoft Inc. HoloLens. 2015.
https://www.microsoft.com/microsoft-hololens/

28. Brad Myers, Scott E. Hudson, and Randy Pausch.
2000. Past, present, and future of user interface
software tools. ACM Trans. Comput.-Hum. Interact. 7,
1, 3-28.

29. Michael Nebeling, Theano Mintsi, Maria Husmann,
and Moira Norrie. 2014. Interactive development of
cross-device user interfaces. In Proc. CHI '14, 2793-
2802.

30. Donald A. Norman and Stephen W. Draper. 1986. User
Centered System Design; New Perspectives on Human-

Computer Interaction. L. Erlbaum Assoc. Inc.,
Hillsdale, NJ, USA.

31. Stephen Oney and Joel Brandt. 2012. Codelets: linking
interactive documentation and example code in the
editor. In Proc. CHI '12, 2697-2706.

32. Roman Rädle, Hans-Christian Jetter, Mario Schreiner,
Zhihao Lu, Harald Reiterer, and Yvonne Rogers. 2015.
Spatially-aware or Spatially-agnostic?: Elicitation and
Evaluation of User-Defined Cross-Device Interactions.
In Proc. CHI '15, 3913-3922.

33. Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R.
Klemmer. 2011. d.tour: style-based exploration of
design example galleries. In Proc. UIST '11, 165-174.

34. Sifteo Inc. Sifteo Cubes. 2015. https://www.sifteo.com/

35. Michael Toomim, Andrew Begel, and Susan L.
Graham. 2004. Managing Duplicated Code with
Linked Editing. In Proc. VLHCC '04: the 2004 IEEE
Symposium on Visual Languages - Human Centric
Computing, 173-180.

36. Khai N. Truong, Gillian R. Hayes, and Gregory D.
Abowd. 2006. Storyboarding: an empirical
determination of best practices and effective
guidelines. In Proc. DIS '06, 12-21.

37. Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
enabling easy specification of cross-device web
applications. In Proc. CHI '14, 2783-2792.

38. Mark Weiser. 1981. Program slicing. In Proc. ICSE
'81: the 5th International Conference on Software
engineering, 439-449.

